

京大院工 竹中幹人・西辻祥太郎 横浜ゴム 網野直也・石川泰弘 日本原子力機機構 山口大輔・小泉智

試料・・SBR-シリカ/ヘキサン		
SBR-シリカ充填系		溶媒混合比
原料	wt	d-hexane/h-hexane
SBR	100.0	(vol/vol)
Silica(NSIpsil AQ)	55.8	100/0
ZnO	3.0	80/20
Stearic Acid	1.0	70/30
シランカップリング剤	4.5	55/45
航 前 前 百 百 百 百 百 百 百 百 百 百 百 百 百	1.5	40/60
<u> </u>	1.5	- 30/70
SBR-シリカ充填系を溶媒に膨潤		
\downarrow		
SANSにより測定		

散乱関数l(q)から各成分の構造関数を求める

 $I(q) = (a_P - a_H)^2 S(q)(q) + S(q(q) + S(a_S(q))) S_{Y} S(q)(q)(a_S - a_H)^2 S_{SS}(q)$

ar:単位体積あたりのポリマーの散乱能 as:単位体積あたりのシリカの散乱能 aH:単位体積あたりのヘキサンの散乱能 Spp(q):ポリマーの構造関数 Sss(q):シリカの構造関数 Sss(q):ポリマーとシリカの相関による構造関数

$$\begin{split} &I_1(q) {=} \alpha_1 S_{PP}(q) {+} \beta_1 S_{PS}(q) + \gamma_1 S_{SS}(q) \\ &I_2(q) {=} \alpha_2 S_{PP}(q) {+} \beta_2 S_{PS}(q) + \gamma_2 S_{SS}(q) \\ &I_3(q) {=} \alpha_3 S_{PP}(q) {+} \beta_3 S_{PS}(q) + \gamma_3 S_{SS}(q) \end{split}$$

式の数が3つの場合は連立方程式を解く 3つ以上n場合は特異値分解法で解く

