

Structural Analyses of Polymers by Small Angle Neutron Scattering

from Kashiwa/Tsukuba 4/5 Mori 4/19 Shibayama 4/26 Yoshinobu 5/10 Sasaki 5/24 Amemiya 5/31 Yamamuro

M. Shibayama, ISSP, U. Tokyo https://www.shibayamalab.issp.u-tokyo.ac.jp/

- 1. Introduction
- 2. Neutron
- 3. Neutron Scattering
- 4. SANS Applications to Polymeric Systems
- 5. Neutron Scattering of Gels
- 6. Structure of Critical Clusters and Biomedical Application
- 7. Report

Guidance schedule: *Apr. 28 (Sat)*, *June 2 (Sat) June 2 (Sat) June 2 (Sat)*

Chem. Div. Institute for Solid State Physics Material Science Course, School of Frontier Science

History of network polymer and gels

Historical innovations in network polymers

OH

OH

Rubber, Ebonite, Goodyear (1839) BakeliteIon exeDr. Leo Bakeland (1907)(1935)

Ion exchange resin

Still keep their significance as industrial materials since their discovery.

HO

Biomedical application

補助人工心腸

人工透析

智麗のかわり

失われた人体の機能を人工的に取り戻すー その試みは、古代エジプトの義歯にはじまるという。・・

明34万人の患者が訪れるメイヨー・

- 2 Cochlear implant (人工内耳)
- 3 Artificial tooth root (人工歯根)
- 4 Deep brain stimulation device (脳深部刺激装置)
- 5 pacemaker $(^{-} ^{-} ^{-} ^{-})$
- 6 Artificial blood vessel (人工血管)
- 7 Auxiliary artificial heart (補助人工心臓)

Asahi News Paper Globe, 2010.3.22

Shimbun akbeasahicon

Overcoming Medical Device Lag

Biomedical application

various types of gels

2. Neutron

1. Atom and Neutron

Size of an atom (≈ 0.1 nm = 10⁻⁸cm)

A neutron is about 1/10⁵(≈ 10⁻¹³ cm) as large as an atom. (A neutron is 1 cm large if an atom is 1 km large.)

With an eye of neutron, the nuclei in materials are so dilute that most of neutrons pass through the materials without scattering.

When a neutron passes near an nucleus, nuclear scattering takes place.

For ex.: If an atom is a Colosseo size (188m (long axis)), the nucleus is ca. 2mm!9

2. Neutron and Neutron Scattering

What is Neutron?

 $m_{\rm n} \sim 1 {\rm g} / N_{\rm Avogadro}$

Radius; 1.5 x 10^{-13} cm (10^{-5} of the radius of hydrogen atom) Mass; 1.6749 x 10^{-27} kg (nearly equal to that of proton) Charge; 10^{-18} e (substantially zero) Half-life time; 10.3 min (n -> p + meson) Quantum spin number; 1/2

Generation of neutrons:

Atomic reactor or accelerator

Kinds of neutrons

Cold neutrons; $E \le 0.002 \text{ eV}$ Thermal neutrons; $0.002 \le E \le 0.5 \text{ eV}$ Epithermal; $0.5 \le E \le 500 \text{ eV}$ Fast neutrons; $500 \text{ eV} \le E$

Similar to the electromagnetic wave, i.e., g-rey, X-ray, UV, VL, IR, ...

History of neutron scattering:

Discovery: Chadwick (1932) Observation of diffraction (1936) Polymer research by neutron scattering (1972)

Chadwick, Nobel winner, 1935

Brockhouse & Shull, Nobel winner, 1994

3. Properties of neutron

	Three Generations Matter (Fermions)						
mass	$m_{\rm n}$ = 1.675 x 10 ⁻²⁷ kg	mass	2.4 MeV	 1.27 GeV	171.2 GEV	0	
Spin quantum number	s =1/2 (-1/2); Fermion	charge- spin⊣ name-	₩ U 1/2 U up	charm	^{3/3} t ^{1/2} top	0 Y 1 photon	
Mag. moment	$\mu_{\rm n}$ = -1.913 $\mu_{\rm N}$ $\mu_{\rm N}$: nuclear mag. Moment, 3.152 x 10 ⁻¹⁴ MeV/T	u co	4.8 MeV - ³ / ₃ d	384 MeV ^{3/3} S	42 GeV -7/3 1/2	[°] ₁ g	
Lamour freq.	29.16 (MHz/Tesla)	őnő	down	strange	bottom	gluon	
Life time	885.9 ±0.9 s (ca15min)		° Ve	ο 3/2 Vμ	0 ⁰ / ₂ Vτ	${}^{\circ}_{1} Z^{\circ}$	s)
Quark comp.	u-d-d		electron	muon neutrino	tau neutrino	weak force	orce
		Leptons	electron	105.7 MeV -1 ^{3/2} μ muon	1.777 GeV -1 ⁻¹ ¹ / ₂ T tau	*1 1 vveak force	Bosons (F

4. Generation of neutrons

very effective (no. neutrons ∝ proton power) (spallation 1MW ~ reactor 15MW) low heat genaration (~ proton power)

5. Research reactors in the world

FRM-II, Germany

6. Pulse Neutron Source in the world

7. Neutron Science at JRR-3 and J-PARC

8. Reactor neutrons

(reactor)

neutron~eV

<ref.> velocity distribution of noble gas

Maxwell distribution characterized by the temperature of the moderator

Moderator

neutron

~MeV

The velocity distribution of neutrons is the Same as that of noble gas.

Q: Calculate the most probable velocity of argon gas at T=300K.

9. Properties of neutrons

	suchness
energy	$E = mv^2/2 = p^2/2m$; (Einstein, particle wave)
wavelength	$\lambda = h/mv = h/p$; (de Brogile wave)
temperature	E = kT
velocity	$v = (2E/m)^{1/2}$
flux	$\Phi(v) \sim v^3 \exp(-mv^2/2kT_{mod})$ (T_{mod} ; moderator temperature)

	category
10 ⁻⁷ eV	ultra cold neutron
0.1 - 10 meV	cold neutron (moderator: liquid H ₂)
10 – 100 meV	thermal neutron ($T_{mod} \approx$ room temp.)
100 – 500 meV	hot neutron
> 500 meV	epithermal neutron

10. Velocity, wavelength, and wave number of neutrons

Neutron has wave-particle duality.

The velocity, wavelength, and wave number of neutrons depend on temperature.

Only cold neutrons and thermal neutrons are used for small angle neutron scattering. 18

11. Energy dispersion

Scattering by neutrons:

The same dispersion eq. as for electrons

 $\varepsilon = \frac{\hbar^2 k^2}{2m_{\rm n}} = \frac{\hbar^2}{2m_{\rm n}\lambda^2}$

Scattering by photon: For photons, the relationship between energy ε and wavenumber $k = 2\pi/\lambda$ is given by

$$\varepsilon = \hbar \omega = \frac{hc}{\lambda}$$

For visible light $\varepsilon \approx 1 \text{eV}$, $\lambda = 0.4 \sim 0.7 \times 10^4 \text{ Å}$

Hence, light is a suitable probe for μ m-ordered structures.

For Å-ordered structures, photons with

 $\varepsilon \approx 10^4 \text{ eV} = 10 \text{ keV}$ with are necessary and X-ray is the best means.

Scattering by electrons:

Electrons with mass $m_{\rm e}$ has the following dispersion relationship.

$$\varepsilon = \frac{\hbar^2 k^2}{2m_e} = \frac{\hbar^2}{2m_e \lambda^2} \qquad m_e = 9.109 \times 10^{-31} \text{ kg}$$
$$\lambda = 1\text{\AA}, \quad \varepsilon \approx 100 \text{ eV}$$

Note that the mass of neutron is very different from that of electron. $m_{\rm n} = 1.675 \times 10^{-27}$ kg (ca 1800 times larger than e)

 $\lambda = 1$ Å, $\varepsilon \approx 0.05$ eV

~ thermal energy

12. Energies governing soft matter dynamics

Soft and flexible

13. Comparison of X-ray and neutron

Matsubayashi (JAEA), Mochiki (Musashino Inst. Tech.), Toshiba

14. Neutron contrast

15. Detection of neutrons

Neutron: electroneutral

By generating electric charges via nuclear reaction, and counting them

	Cross section、 (25meV)	Generated particles	energy— [MeV]	Total energy[MeV]
n + ³ He	5333b	р, ³ Т	0.57, 0.2	0.77
n + ⁶ Li	941b	³T, ⁴He	2.74, 2.05	4.79
n + ¹⁰ B	3838b	4He, ⁷Li, γ	1.47, 0.83, 0.48	2.30
n + ²³⁵ U	681b	fission		1 - 2

b ; a unit of scattering cross section $b = barn(10^{-24} \text{ cm}^2)$

Neutron Science Lab., ISSP, U. Tokyo NSL-ISSP : SANS-U

University-owned Instruments at JRR-3

University-owned instruments: 14, ISSP 9, Tohoku U. 3, Kyoto U. 2 No. proposals: ~300 No. users (man.day) : in-house 2000, outside 5000, total 7000 No. papers : ~100 /y 25

ISSP: SANS-U

Neutron Instruments at MLF

The first neutron in May, 2008 23 Neutron Beam Ports From Fundamental Physics to Industrial Uses In operation: 18 Under construction: 3 Constructed by KFK -JAEA J-PARC MLF Ibaraki Prefecture Government (Direct funding) Operation days/Year 200days/year (176days in 2012) Staffs and out-sourcing 150 + 70relevant organ. altogether

Why Neutrons ?

3. Neutron Scattering

Young's Double Slit Experiment

Neutron Scattering

Young's Experiments with Neutron Wave and Atoms

Neutron Scattering Cross Section

Scattering by Many Nuclei

The scattered wave from many nuclei located at \vec{R}_{i}

$$\psi_{scat} = \sum_{j} e^{i\vec{k}_{in}\cdot\vec{R}_{j}} \frac{-b_{j}}{\left|\vec{r}-\vec{R}_{j}\right|} e^{i\vec{k}_{out}\cdot(\vec{r}-\vec{R}_{j})} = e^{i\vec{k}_{out}\cdot\vec{r}} \sum_{j} \frac{-b_{j}}{\left|\vec{r}-\vec{R}_{j}\right|} e^{-i(\vec{k}_{out}-\vec{k}_{in})\cdot\vec{R}_{j}}$$

Therefore

$$\frac{d\sigma}{d\Omega} = \frac{\mathbf{v} |\psi_{scat}|^2 dS}{\mathbf{v} d\Omega} = \frac{dS}{d\Omega} \left| e^{i\vec{k}_{out} \cdot \vec{r}} \sum_{j} \frac{b_j}{\left|\vec{r} - \vec{R}_j\right|} e^{-i(\vec{k}_{out} - \vec{k}_{in}) \cdot \vec{R}_j} \right|^2$$

If we measure far enough away so that $r >> R_{i}$, then $|\vec{r} - \vec{R}_i| \approx r$ $d\Omega = \frac{dS}{r^2}$

$$\frac{d\sigma}{d\Omega} = \left|\sum_{j} b_{j} e^{-i\vec{Q}\cdot\vec{R}_{j}}\right|^{2} = \sum_{ij} b_{i} b_{j} e^{-i\vec{Q}\cdot(\vec{R}_{i}-\vec{R}_{j})}$$

$$\left|e^{i\vec{k}_{out}\cdot\vec{r}}\right|^2=1$$

where the wavevector transfer \vec{Q} is defined as

$$\vec{Q} = \vec{k}_{out} - \vec{k}_{in}$$

35

Scattering vector Q

For elastic scattering

37

Note: The dimension of Q = 1/Length

$$Q = \frac{2\pi}{d} \quad \text{or} \quad d = \frac{2\pi}{Q}$$

Scattering Length

Neutron Interaction Potentials

10. Calculation of scattering lengths

http://www.ncnr.nist.gov/resources/n-lengths/

$$b \equiv b_{molecule} = \sum_{i} r_i b_{atom,i}$$

Ex. benzene C_6H_6 $b_{benzene} = 6b_H + 6b_C$ $= 6 \times (-3.739 \times 10^{-13}) + 6 \times (6.646 \times 10^{-13})$ $= 17.442 \times 10^{-13} [cm]$

Isotope	conc	Coh b	Inc b	Coh xs	xs Inc xs		Abs xs	
	% fm (=10 ⁻¹³ cm)		fm	barn(=10 ⁻²⁴ cm ²)	barn	barn	barn	
						Scattering	Absorption	
		Coh. Scatt.	Inc. scatt.	Coh. Cross	Inc. cross	cross	cross	
isotope	Conc.	length	length	section	section	secdtion	section	
н		-3.739		1.7568	80.26	82.02	0.3326	
¹ H	99.985	-3.7406	25.274	1.7583	80.27	82.03	0.3326	
² H	0.015	6.671	4.04	5.592	2.05	7.64	0.000519	
С		6.646		5.551	0.001	5.551	0.0035	
N		9.36		11.01	0.5	11.51	1.9	
0		5.803		4.232	0.0008	4.232	0.00019	
		b		$\sigma_{ m coh}$	σ_{inc}	σ_{s}	$\sigma_{\!a}$	

Q: Calculate the scattering lengths of light (H_2O) and heavy (D_2O) waters.

Neutron scattering lengths and cross sections

H						
Ц	Ве					
Na	Мg					Z
×	Ca	Se	Т	v	Gr	Mn
Rb	Sr	٣	Zı	Nb	Mo	TC
Cs	Ba	La	н	Ta.	*	Re
Fr	Ra	Âc				
				Ce	Pr	Nđ
				Th	Pa.	U

Neutron scattering lengths and cross sections							
Isotope	conc	Coh b	Inc b	Coh xs	Inc xs	Scatt xs	Abs xs
н		-3.7390		1.7568	80.26	82.02	0.3326
١н	99.985	-3.7406	25.274	1.7583	80.27	82.03	0.3326
2H	0.015	6.671	4.04	5.592	2.05	7.64	0.000519
ЗН	(12.32 a)	4.792	-1.04	2.89	0.14	3.03	0

Column	Unit	Quantity					
I		Isotope					
2		Natural abundance (For radioisotopes the half-life is given instead)					
3	fm	bound coherent scattering length					
1	fm	bound incoherent scattering length					
5	barn	bound coherent scattering cross section					
6	barn	bound incoherent scattering cross section					
,	barn total bound scattering cross section						
3	barn	absorption cross section for 2200 m/s neutrons					

NOTE: The above are only thermal neutron cross section dependent cross sections please go to the National Nur

Select the element, and you will get a list of scattering I Feature section of neutron scattering lengths and cross No. 3, 1992, pp. 29-37.

The scattering lengths and cross sections only go throu

Note: 1fm=1E-15 m, 1barn=1E-24 cm^2, scattering lengths and cross sections in parenthesis are uncertainties. A long table with the complete list of elements and isotopes is also available.

Neutron Scattering : Fourier Transform

Differential scattering cross-section

 $\frac{d\sigma}{d\Omega}(\vec{Q}) = \left\langle \left| \sum_{j} b_{j} e^{-i\vec{Q}\cdot\vec{R}_{j}} \right|^{2} \right\rangle$

Dirac delta function $\int \delta(\vec{r}) d\vec{r} = 1$ $\int f(\vec{r}) \delta(\vec{r} - \vec{R}) d\vec{r} = f(\vec{R})$

 $n(\vec{r}) = \sum_{j} \delta(\vec{r} - \vec{R}_{j}) : \text{Atomic number density}$ $\rho_{\text{sld}}(\vec{r}) = \sum_{j}^{j} b_{j} \delta(\vec{r} - \vec{R}_{j}) : \text{Scattering length density}$ $\text{F.T.}\{\rho_{\text{sld}}(\vec{r})\} = \int \rho_{\text{sld}}(\vec{r})e^{-i\vec{Q}\cdot\vec{r}}d\vec{r} = \int \sum_{j} b_{j} \delta(\vec{r} - \vec{R}_{j})e^{-i\vec{Q}\cdot\vec{r}}d\vec{r} = \sum_{j} b_{j}e^{-i\vec{Q}\cdot\vec{R}_{j}}$

$$\frac{d\sigma}{d\Omega}(\vec{Q}) = \left\langle \left| \int \rho_{sld}(\vec{r}) e^{-i\vec{Q}\cdot\vec{r}} d\vec{r} \right|^2 \right\rangle$$

Coherent and Incoherent Scattering

The scattering length, b_i , depends on the nuclear isotope, nuclear spin relative to neutron spin. For a single nucleus, Random fluctuation due to isotope and spin $b_i = \langle b \rangle + \dot{\delta b}_i$ where δb_i averages to zero $b_i b_i = \langle b \rangle^2 + \langle b \rangle (\delta b_i + \delta b_i) + \delta b_i \delta b_i$ Note: $\langle \delta b_i \rangle = 0$ and $\langle \delta b_i \delta b_i \rangle = 0$ unless i = j If $\mathbf{i} \neq \mathbf{j}$, $\langle b_i b_j \rangle = \langle b \rangle^2$ If $\mathbf{i} = \mathbf{j}$, $\langle b_i b_j \rangle = \langle b_i^2 \rangle = \langle b^2 \rangle = \langle b^2 \rangle = \langle b^2 \rangle^2 + \langle \delta b_i^2 \rangle = - - > \langle \delta b_i^2 \rangle = \langle b^2 \rangle - \langle b^2 \rangle^2$ Therefore. $\langle b_i b_j \rangle = \langle b \rangle^2 + \delta_{ij} \left(\langle b^2 \rangle - \langle b \rangle^2 \right) \left(\left(\frac{d\sigma}{d\Omega} \right)_{ij} = \left(\frac{d\sigma}{d\Omega} \right)_{ij} + \left(\frac{d\sigma}{d\Omega} \right)_{ij} \right)$ $\frac{d\sigma}{d\Omega} = \left\langle \sum_{i,j} b_i b_j e^{-i\vec{Q}\cdot(\vec{R}_i - \vec{R}_j)} \right\rangle = \sum_{i,j} \left\langle b_i b_j \right\rangle e^{-i\vec{Q}\cdot(\vec{R}_i - \vec{R}_j)} = \left\langle b \right\rangle^2 \sum_{i,j} e^{-i\vec{Q}\cdot(\vec{R}_i - \vec{R}_j)} + N\left(\left\langle b^2 \right\rangle - \left\langle b \right\rangle^2\right)$ Coherent scattering Incoherent scattering - scattering depends on Q - contains structural information

Fourier Transform

4. SANS Application to Polymeric Systems

44

What Information from SANS ? : Particulate Systems

What Information from SANS ? : Non-Particulate Systems

$$\frac{d\Sigma}{d\Omega}(Q) = 4\pi \left\langle (\Delta \rho)^2 \right\rangle \int_V \gamma(r) \frac{\sin(Qr)}{Qr} r^2 dr$$

Contrast Correlation Orientation
function average

$$\gamma(r) = \frac{\int \langle \Delta \rho(\mathbf{r'}) \Delta \rho(\mathbf{r'+r}) \rangle d\mathbf{r'}}{\int \langle \Delta \rho(\mathbf{r'}) \Delta \rho(\mathbf{r'}) \rangle d\mathbf{r'}}$$

Small-angle scattering 1. what is small-angle scattering?

Constructive interference from structures in the direction of q

• Scattering is at small angles - non-zero but smaller than classical diffraction angles

Information obtained by smallangle scattering experiments

Scattering function from a polymer chain

Q: Discuss the asymptotic behavior of the Debye function near *x*=0 and *x*=large.

Summary (3)

correlation functions and scattering intensity for various systems

$$g(r) \Leftrightarrow I(Q) = \int g(r) \exp(i\mathbf{Q} \cdot \mathbf{r}) d\mathbf{r} = \int g(r) \frac{\sin Qr}{Qr} 4\pi r^2 dr$$

corr. fns.

scatt. fns.

Gaussian fn. (scattering from an assembly of non-interacting particles)

5. Neutron Scattering on Gels

Tough hydrogels

Slide-ring gel

Okumura, Adv. Mater., 2001

K. Ito

Haraguchi, Adv. Mater., 2002

K. Haraguchi

Sakai et al., Macromol., 2008

Tetra-PEG gels

TC 304 (Mar 17, 2017)

Sakai, et al., Macromolecules, 41, 5739 (2008)

Preparation of Tetra-PEG

3x speed ~ 1 min

Advanced physical, chemical, and biological properties

- 1. high compressive toughness (compatible to cartilage)
- 2. high transparency
- 3. biocompatible and nontoxic
- 4. easy and quick preparation
- Etc.

remarkable mechanical properties owing to "elastic blobs"

Macromolecules, 43, 488 (2010)

subcutaneous implantation of Tetra-PEG gel

The back of immunocompetent mice 100mL of Tetra-PEG was implanted under anesthesia. One week after implantation.

scattering functions of polymer gels

Liquidlike component (Lorentz)

$$I_{\rm soln}(q) = \frac{I_{\rm soln}(0)}{1 + \xi^2 q^2}$$

(i) another Lorentz function

$$I_{\rm ex}(q) = \frac{I_{\rm ex}(0)}{1 + \xi_{\rm G}^2 q^2}$$

(ii) a stretched exponential function

$$I_{\text{ex}}(q) = I_{\text{ex}}(0) \exp\left[-(q\Xi)^{\alpha}\right]$$

(iii) a Debye-Bueche function

$$I_{\rm ex}(q) = \frac{I_{\rm ex}(0)}{\left(1 + b^2 q^2\right)^2}$$

Cross-link density dependence of I(q) for NIPA gels

Macromolecules, 2002, 35, 4779.

SANS of Tetra-PEG gels

Macromolecules, 42, 1344 (2009); 42, 6245 (2009)

- 1. No inhomogeneity appears even after swelling.
- 2. For high MW gel, the network structure in swollen state is independent of t

SANS master plot

Macromolecules, 42, 6245 (2009)

Macromolecules, 44, 1203 (2011)

No anisotropy due to isotropic thermal motion

6. Structure of Critical Clusters And Biomedical Application

Cross-end-coupling 1

Cross-end-coupling 2

Reaction condition
- Organic solution

Cross-end-coupling 3

Thiol-terminated PEG

Reaction condition

Aqueous solution (No hydrolysis pH<7)
Organic solution

Critical clusters

Attributed to the scaling relation between clusters sizes and their numbers, numerous scaling relations have been found by scattering and rheology.

A new type critical clusters

Mix two different prepolymers with Wait until reaction ends, an unbalanced ratio

Prepolymers

Critical clusters

If one adds one more blue unit, the system will percolate.

Sakai, T. et al., Polymer Journal, 2016.

New type critical clusters

By tuning prepolymers' ratio and their concentrations, one can obtain a series of different critical cluster solutions.

Do these critical clusters show the same scalings with conventional ones ?

Toward Realization of ideal polymer network

T. Sakai et al. Macromol. Rapid Commun., 2010, 31, 1954.

7. Report

- 1. Explain the difference between spectroscopy and scattering. Show some examples how these techniques are used in soft matter science.
- 2. Estimate the energies of X-ray, neutron, and electron with the wavelength of 1Å. Discuss how these probes are used structural analyses of soft matter.
- 3. Show some examples of neutron scattering studies on soft matter.