1次元フーリエ変換(1D Fourier Transform)
最終更新日:2023.5.1
1次元フーリエ変換の例として、箱型の1次元密度分布をもつ系(棒)のフーリエ変換をやってみます。長さaの棒の散乱関数は、(3π/2)(2/a)に極大をもつ減衰振動関数で、かつ棒の長さの2乗、および棒内外の散乱長密度差の2乗に比例します。
As an example of 1D Fourier transform, let us try the Fourier transform of a system (bar) with a box-shaped 1D density distribution. The scattering function of a bar of length a is a damped oscillating function with a maximum at Q= (3π/2)(2/a) and is proportional to the square of the bar length and the square of the difference in scattering length density between the inside and outside of the bar.